
Chapter 3

A Lexical Contrast Model of
Phonological Acquisition

If we take phonological units as a set of symbols that can be used combinatorially in lexical

representation, models of phonological acquisition should aim to satisfactorily explain how

such symbolic units emerge. This chapter presents a model of phonological acquisition that

accounts for the simultaneous learning of abstract phonological categories, their mapping

onto the relevant acoustic features, and symbolic lexical representations using the acquired

phonological units. This learning model introduces a mechanism of phonological category

creation and refinement without the assumption of innately available phonological features.

Central to this model is the idea that the need to represent lexical contrast is the driving force

behind the creation and adjustment of phonological categories. The model, like the infant

learner, begins with no phonological knowledge. As the model acquires words with distinct

meanings, the need for abstract representation arises, and the model creates phonologically

meaningful contrasts within the acoustic space to allow appropriate representations of the

words in the learner’s lexicon.

3.1 Lexical contrast and phonological acquisition

The notion of lexical contrast has a long history in phonology and was especially important

in early approaches in phonology although it has received less attention in recent years

(see Dresher, 2016, for a review). In phonological analysis, phonological distinctions are

diagnosed via lexical contrast through the minimal pair test. More recently, researchers
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in language acquisition have given word learning a more central role in the acquisition of

phonological knowledge (Jusczyk, 1997; Werker and Curtin, 2005). This section reviews

and discusses the importance of lexical contrast in phonological representation and offers

motivation for a path of acquisition through the continuous restructuring of the phonological

space to accommodate lexical distinctions.

3.1.1 Minimal pairs and lexical contrast

Phonological analysis operates on the symbolic level, which rests on the identification of

abstract units of representation. Minimal pairs are a very efficient way of doing so. A

minimal pair is two words that have distinct meanings and differ by only one unit. The

unit is often assumed to be a segment. For English, “bin” and “pin” can be used to establish

that /b/ and /p/ are distinct segments, i.e., phonemes. In commonly used feature theories,

/b/ and /p/ are also minimal in the sense that they differ by only one phonological feature

[voice]. Words such as “shin” and “bin” are a minimal pair and differ by one phoneme, but

/S/ and /b/ differ by more than one phonological or articulatory feature. While /S/ is a

voiceless alveolar fricative, /b/ is a voiced bilabial stop. As such, [S] and [b] would also be

more acoustically distinct than [b] and [p]. Additionally, for languages with suprasegmental

features, minimal pairs can be found with words that share the same segments but differ in

other aspects of articulation, such as pitch or phonation.

What role do minimal pairs play in phonological acquisition? Approaches that empha-

size phonetic learning view minimal pairs as unnecessary (Maye and Gerken, 2000) and favor

statistical learning. This approach often draws heavily from the perceptual discrimination

results. However, as discussed extensively in Chapter 2, although perceptual discrimina-

tion provides compelling evidence for early phonetic development on the perceptual level,

these results do not necessarily map directly to the development of abstract phonological

categories. In addition to understanding the developmental trajectory of the discriminatory

abilities themselves, it is equally important to carefully consider whether and how phonetic

discrimination is used by the learner to parse linguistic input.
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(a) Speaker 1: BAT (b) Speaker 1: BAD

(c) Speaker 2: BAT (d) Speaker 2: BAD

Figure 3.1: Spectrograms of the minimal pair “bat” vs. “bad” by two speakers.

The picture becomes more complicated when the details acoustic realizations are taken

into consideration. Take the minimal pair “bat” and “bad” in English. When transcribed

phonemically, they are respectively /bæt/ and /bæd/. Based on the phonemic analysis

of the adult grammar, one might expect a minimal pair-based learner to identify the last

segment as distinct phonemes. However, the actual acoustics of the two words suggests that

this process is far more involved. Figure 3.1 illustrates the complications from the acoustic

signal. Figure 3.1a and Figure 3.1b are the minimal pair produced by speaker 1. As can

be seen, the acoustic distinctions between these two words are far from minimal. First, the

vowel of “bad” is longer (each pair is plotted on the same time scale). The closure for the

/t/ in “bat” is longer than the /d/ in “bad”, and “bat” has a stronger release than “bad”.

There is a small amount of voicing for the /d/ in “bad”. Since multiple acoustic cues differ

between these two words, how does the learner figure out which ones are relevant? It would

not be unreasonable to hypothesize that vowel length is the distinction between these two

words, rather than the final consonant. Tokens from a second speaker further illustrate the
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challenge of learning from the acoustic signal. In Figure 3.1c, the final /t/ is unreleased.

Figure 3.1d has more prevoicing and a fairly strong burst and release. Similar to speaker

1, the vowel in “bad” is longer than the vowel in “bat”. Clearly, a minimal phonological

contrast does not correspond to a minimal phonetic contrast both within each speaker and

across different speakers.

What, then, can the learner abstract away from knowing that the signal for “bat” and the

signal for “bad” have different meanings and sounds? From two words that are acoustically

different and referentially different, there is enough evidence that some contrast between

them needs to be represented. This information is not sufficient to pinpoint the exact

nature of this contrast, but learner can make an initial hypothesis about what to represent

from the signal. Perhaps vowel length would be identified as the contrastive feature between

“bat” and “bad”, if the learner happens to perceive duration as the most salient difference

between these two words. Then, as the learner acquires from words with /æ/ or encounter

/t/ and /d/ in other contexts, the learner can use the additional lexical knowledge to evaluate

the hypothesis that vowel length is the distinctive feature between “bat” and “bad”. The

important takeaway from these observations is that while the phonologist knows that “bat”

and “bad” are a minimal pair, the learner does not. All the information the learner has is

that these two words sound different and mean different things.

If a difference in signal and a difference in meaning are the only cues necessary for

learning contrasts, the learner does not require phonological minimal pairs to start acquiring

phonological contrasts. It is really the notion of lexical contrast that is important here. The

words “fish” and “dog” differ by all three segments in adult English phonology. However, if

these are the only two words a learner knows, the learner only needs two abstract symbols

to represent them and can assign some acoustic salient cues to each symbol. In this initial

state of phonology of the learner, “fish” and “dog” would actually be a minimal pair since

they differ in sound and differ by one phonological unit of representation. Indeed, the

phonological abstraction of what is contrastive is only as detailed as the learner’s lexicon

needs it to be. Minimal pairs in adult phonology may not correspond to minimal pairs
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in a developing phonology because these phonologies can be very different. The minimal

pairs in adult phonology are the end result of generalizing lexical contrasts over the acoustic

space. Although the learner does not require minimal pairs to begin phonological acquisition,

minimal pairs are nevertheless essential to the eventual refinement of phonological categories.

Minimal pairs in the input grammar are words of high phonological signal, and they can

help the learner to better pinpoint the relationship between abstract phonological units and

their surface phonetic distinctions.

3.1.2 Phonological representation and lexical access

The phonological representations of words are accessed in word recognition. In mature

adult phonology, homophones should have the same underlying phonological units, and

experimental evidence suggests that this is in fact the case. Lexical decision tasks with

homophones and non-word homophones show that words are phonologically encoded in the

lexicon and that phonological processing occurs in the word recognition process. Some of

this evidence comes from visual word recognition. Early work by Rubenstein et al. (1971)

suggests that phonological processing does occur in lexical recognition. When subjects are

presented with a homophonous non-word (e.g., brane), the reaction time is slower than

phonotactically legal non-words without homophones. The longer latency for homophonous

non-words is interpreted as longer search time as a result of phonemic matching. A separate

experiment with all real words show that there is also a word frequency effect; low frequency

homophones have higher latency and lower accuracy. Additionally, homophones facilitate

the access of semantically related items (e.g., rows for flower, chare for table) (Van Orden,

1987; Lukatela and Turvey, 1991). Even though these experiments used orthography, the

results indicate that orthography is parsed into some abstract phonemic representation,

resulting in the observed effects from phonological homophones.

In the acoustic domain, word recognition is clearly not solely based on acoustics but

rather combines acoustic and contextual cues. Because of the close association between

phonology and phonetics, it would be easy to assume that phonology provides the mapping
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between acoustics and abstract forms. This is partially correct. Phonology is a function

that combines all levels of information (phonetic, phonological, morphological, syntactic,

semantic, and pragmatic) to produce an abstract representation. When listening to prose,

subjects sometimes fail to identify words with a phoneme mispronounced, especially in word

initial positions (Cole, 1973; Cole et al., 1978). The retrieval of words is highly dependent

on context. Syntactic and semantic context play a role in lexical parsing (Marslen-Wilson,

1975; Marslen-Wilson and Welsh, 1978), and listeners struggle to identify words when they

are removed from their conversational context (Pollack and Pickett, 1963). On the segmental

level, phoneme identification is also associated with contextual predictability of the words

they occur in (Morton and Long, 1976).

3.1.3 Early lexical representation and underspecification

Research in lexical acquisition shows that word learning begins early (Borden et al., 1983;

Tincoff and Jusczyk, 1999; Bergelson and Swingley, 2012), and that infants are aware of

phonetic details in familiar words (e.g., Jusczyk and Aslin, 1995; Swingley, 2005, 2009; Mani

and Plunkett, 2010). However, not all phonetic details may be encoded as phonologically

relevant by the learner (Van der Feest and Fikkert, 2015). When the nuances of perceptual

identification are investigated, it appears that certain aspects of words are remembered

better than others. For example, the stressed portion of the word is better represented. For

bisyllabic words, 11-month-old French infants failed to recognize familiar words when the

medial consonant was modified, but still recognized the words when the initial consonant

was changed in manner or voicing (Hallé and de Boysson-Bardies, 1996). The stress pattern

in English is different, and early perception reflects this difference. At 11 months, English-

learning infants did not recognize familiar words when the initial consonant was modified,

but tolerated modifications to the medial consonant (Vihman et al., 2004).

Another line of research suggests that early representation is more holistic than segmen-

tal. In production especially, word forms appear be represented more holistically early on,

and often only salient details are retained (Ferguson and Farwell, 1975; Walley, 1993). A
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number of studies suggest that early lexical representation may be phonologically under-

specified (Hallé and de Boysson-Bardies, 1996). Moreover, young children process phonetic

similarity on the syllabic level rather than phonemic level, and they are better at identifying

items that share multiple phonemes than a single phoneme (Treiman et al., 1981; Walley

et al., 1986). Also, children are more influenced by coarticulatory cues. For example, they

rely more on vowel formant transitions in identifying fricatives than adults (Nittrouer and

Studdert-Kennedy, 1987; Nittrouer et al., 1989).

3.1.4 Word learning and referent resolution

How young children learn the meaning of words is an important research question. Much like

acoustic data, the signal for word-referent mappings is extremely noisy. Even nouns referring

to concrete objects can be difficult to identify since many interpretations can fit the scene

in which they are uttered. However, even at a very early stage of word learning, infants

are able to identify the intended referents to their acoustic forms (Bergelson and Swingley,

2012; Mani and Plunkett, 2010; Tincoff and Jusczyk, 2012). Different mechanisms have

been proposed to account for the acquisition of word-referent mapping. Mutual exclusivity

(i.e., no two words can have identical meaning) can help constrain the learning of new words

(Markman and Wachtel, 1988; Markman et al., 2003). Cross-situational statistics, through

which the learner keeps track of common signal and objects across multiple scenes, offers

one account for the learning of word-referent mappings (Smith and Yu, 2008).

There is a lot of active research in this area, but it is beyond the scope of this dissertation

to address how referents are identified. The model described in the next section incorporates

a random element in the acquisition of words, but it does not propose a mechanism through

which the correct identification of the referent is achieved.

3.2 A model of phonological emergence

This section introduces a concrete mechanism whereby the learner acquires discrete phono-

logical representations from continuous, variable acoustic signal. Given a set of words in
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a lexicon and their corresponding acoustic realizations, the model arrives at the relevant

phonological features that best represent the contrasts in the lexicon. The two components

of the model are the lexicon and its associated phonology. The lexicon stores each word’s

phonetic representation including exemplars, frequency, and its abstract representation ac-

cording to the current state of the learner’s phonology. The learner’s phonological knowledge

describes the relationship between acoustic cues and abstract phonological categories. For

each phonologically contrastive dimension, the phonological knowledge enables the learner

to transform the acoustic signal into abstract representations by paying attention to the cues

that are informative for each contrast. At the end of learning, the model acquires 1) the

appropriate number of phonological contrasts that are best suited to represent the lexicon,

2) which acoustic cues matter for each contrast, and 3) the abstract symbolic representation

for each word in the lexicon.

This section describes the components and operations of the model and discusses the

emergent properties of the model. To fully validate the model, the results from a com-

putational experiment using acoustic data extracted from the Philadelphia Neighborhood

Corpus is presented in the following section.

3.2.1 Lexical learning

Lexical learning begins early and forms the foundation of phonological learning (cf. Section

3.1.3). In this model, the lexicon module stores information about words that the learner

has been exposed to. The learner keeps track of three pieces of information for each referent:

its average (i.e., prototypical) acoustic signal, phonological representation, and frequency.

The structure of the lexicon is illustrated in Figure 3.2.

The learner begins with no words in the lexicon. At each learning iteration, the learner

is presented with the referent of a word and its acoustic signal. The model assumes that

the learner is always able to correctly identify an acoustical signal with its referent, as in

a perfect lab learning situation. The mapping between the signal and its referent is by no

means a simple problem in language acquisition, but it is not a problem that this model
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LEXICON

. . .

TOWEL

frequency 97

phonological
representation /1 0 1 0 1 0/

acoustic
signal [0.126, 0.021, 0.232. . .]

DOLPHIN

frequency 42

phonological
representation /0 1 0 1 0 1/

acoustic
signal [-0.805, 0.387, 0.388. . .]

Figure 3.2: The structure of the lexicon.

aims to solve. As acoustic tokens for each referent are presented, the learner begins building

up their knowledge of the phonetic forms that are associated with each referent. Since this

model is primarily concerned with phonological acquisition, I make simplifying assumptions

about the representation of a word’s syntax, semantics, and pragmatics. The phonological

learning part of this model only requires the learner to identify words as distinct in meaning

along any of the dimensions of linguistic contrast.

The phonetic knowledge part of the lexicon reflect the learner’s overall experience with

phonetic forms of a word, and it includes any acoustic cue that the learner perceives from the

input, both phonologically relevant cues and cues that do not contribute to any phonological

contrast in the language. This phonetic knowledge is represented as the average of all the

acoustic realizations corresponding to a referent, and it is updated each time an acoustic

token for a referent is heard. As a result, after hearing a number of acoustic realizations
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identifying a referent, the learner knows what a typical realization sounds like for this ref-

erent, and this process effectively creates an acoustic prototype for the phonetic realization

of a word. After each iteration, the acoustic knowledge according to Equation 3.1, and

frequency is updated according to Equation 3.2.

s =
s⇥ f + si
f + 1

(3.1)

f = f + 1 (3.2)

where:

f = word frequency; the number times a word has been heard

s = the existing prototypical (average) signal of a word

si = a specific acoustic token of the word

Before a word can make an impact on phonological learning, the learner needs enough

familiarity with the word to be able to recognize it consistently. To simulate the increasing

familiarity with a word with exposure, a simple frequency-based memory system is used

to model the acquisition of words. The more frequently a word has been heard, the more

likely that it is acquired by the learner and used in phonological learning. Before a word is

acquired, the learner only updates their knowledge of the word on the phonetic level, and

its phonological form is determined at the point of word acquisition. The acquisition of

phonological contrasts and representations will be discussed in the following section.

The acquisition of a word is implemented as a probabilistic process with the likelihood

increasing as the frequency of the word increases. After each token is heard, a random

acquisition threshold t is generated from a uniform distribution between 0 and 1 (Equation

3.3). A random threshold is used to implement some noise in the learning process. The

familiarity of a word is modeled as a logistic function (cf. Anderson et al., 1998) in Equation

3.4 (illustrated in Figure 3.3 for k = 20). If the familiarity r of the word is greater than

the threshold t, the word is marked as acquired and pass onto the phonology module to be
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assigned a phonological representation.

t = unif(0, 1) (3.3)

r =
1.0

1.0 + e�(f�k)
(3.4)

where:

t = threshold at which a word is considered acquired

r = familiarity to the word

k = the word frequency at which r = 0.5

Figure 3.3: The probability of word familiarity as a function of word frequency.

Figure 3.4 illustrates this process of word learning. These illustrations assume a toy

language with only three acoustic dimensions (VOT, F1, F2) on the phonetic level and an

unknown number of words. Figure 3.4a represents the stage prior to any lexical learning, and

each grey dot represents some acoustic token of the words in this language. In Figure 3.4b,

the learner begins paying attention to certain words, as represented by the BLUE and RED

dots. Dots of the same color represent acoustic tokens that have the same referent. In Figure

3.4c, the learner is exposed to more tokens of BLUE. After some amount of exposure, the

learner acquires BLUE, as represented by the big BLUE dot in Figure 3.4d). Further lexical
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(a) The learner begins with no phonological

contrast.

(b) The learner begins word learning.

(c) The learner hears many tokens of a

BLUE.

(d) The learner acquires BLUE.

Figure 3.4: An illustration of lexical acquisition.

acquisition occurs the same way. After the learner hears tokens of the same word multiple

times, the learner acquires this word and can use this word in phonological acquisition.

3.2.2 Phonological learning

Phonological learning occurs as the learner continuously makes hypotheses about how to

transform the phonetic signal into abstract phonological categories that best represent the

current lexical distinctions in the learner’s lexicon. The learning is unsupervised and non-

parametric; the learner does not know which phonological distinctions exist in the input
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and is not given target representations. The learner’s representations of words are updated

dynamically as the learner acquires words and phonological contrasts.

The phonological module of the model consists of three processes: contrast creation,

contrast adjustment, and contrast consolidation. In contrast creation, the learner adds a

phonological contrast when the current number of contrasts is insufficient for representing

the lexicon. After its initial creation, each contrast is updated as more words are learned and

assigned to either side of the phonological boundary. Finally, should two contrasts become

functionally the same after updates, they are consolidated into one contrast.

3.2.2.1 Contrast creation

After a period of lexical learning, the learner will begin to recognize familiar words. When

the learner acquires two words that are distinct in meaning, the learner needs to create the

first phonological contrast that allows them to represent these two words distinctly. This is

illustrated in Figure 3.5b, where the learner has acquired both BLUE and RED. To create

the first contrast, the learner creates a division in the phonetic space that separates these

two words based on the salience of the acoustic cues that distinguish these two words. The

light blue plane in Figure 3.5c represents phonological CONTRAST #1, created after the

learner has acquired BLUE and RED. Since these two words appear to be most distinct in

F1, the plane cuts through the acoustic space mostly along the F1 dimension, with some tilt

along the F2 dimension. The learner will be able to represent any subsequent acoustic tokens

along this contrastive plane (Figure 3.5d). If the learner identifies another pair of words as

distinct in meaning but current phonology represents them in the same way (BLUE and

PURPLE in Figure 3.6a), the learner can create an additional contrast (the mostly vertical

plane CONTRAST #2) to accommodate this need for distinct representation (Figure 3.6b).

The number of phonological contrasts grows as the learner gains more vocabulary.

In the computational implementation, the learner’s phonological knowledge is repre-

sented as a matrix W , where each column corresponds to an acquired phonological plane

that divides the multidimensional acoustic space (Equation 3.5). At the beginning of learn-
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(a) The learner begins learn a second word. (b) The acquires a RED.

(c) The learner creates a phonological

contrast in the acoustic space.

(d) The learner can use this acquired contrast

to classify any token in this acoustic space.

Figure 3.5: An illustration of phonological contrast creation.

ing W is empty. Upon acquiring the first two words, the first phonological contrast is

created. To create this contrast, the model compares the acoustic signals of the two words

and determines the most acoustically salient cues between the two words. The relative

salience of cues is calculated as the absolute value of the differences between each cue of the

two words. Then, a phonological contrast is constructed as the plane equidistant from the

most distinctive acoustic cues in the two words (Equation 3.6). Subsequent phonological

contrasts are created in the same fashion, and phonological representations are assigned to

each word using sigmoidal activation (Equation 3.7).
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W =

0

BBBBBBB@

w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
... . . . ...

wm,1 wm,2 · · · wm,n

1

CCCCCCCA

(3.5)

W2:m,j = a1 �
a1 + a2

2

W1,j = �W2:m,j ·
a1 + a2

2
(3.6)

p =
1.0

1.0 + e�Wsi
(3.7)

where:

W = a matrix where each column is a phonological division in the acoustic space

W1:m,j = weights for the jth phonological contrast

a1, a2 = the acoustically salient part of the signals of two distinct words

si = the acoustic signal from some word

p = the phonological representation

3.2.2.2 Contrast update and adjustment

In addition to creating more phonological distinctions to represent the growing vocabulary,

the phonological planes can also shift to to distinguish newly acquired word distinctions.

This operation can be observed in Figure 3.7. In 3.7a, a new word, ORANGE has been

acquired, and it falls in the same phonologically delineated space as PURPLE. In 3.7b, the
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(a) The learner begins learn a third word

PURPLE.

(b) The learner creates a second contrast.

Figure 3.6: The number of contrasts increases to accommodate the bigger vocabulary size.

(a) The learner acquires a new word

ORANGE.

(b) The learner adjusts a phonological con-

trast to accommodate the lexicon.

Figure 3.7: The number of contrasts increases to accommodate the increased vocabulary size.

existing horizontal CONTRAST 1 tilts upward to phonologically separate PURPLE and

ORANGE in the acoustic space.

As new tokens of existing words are heard and as new words are acquired and as-

signed phonological representations, all contrastive planes shift to best reflect the acoustic

distinctions of the words assigned to either side of each boundary. For example, in 3.7b,

there is also a slight shift in the vertical CONTRAST 2. The shift is the result of ad-
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justing to the opposition of RED+BLUE vs. PURPLE+ORANGE, rather than just

RED+BLUE vs. PURPLE (cf. Figure 3.6b). The plane is updated using Equation 3.6,

where a1 =mean(RED, BLUE) and a2 = mean(PURPLE, ORANGE).

3.2.2.3 Contrast consolidation

Because phonological contrasts are created based on prominent acoustic features of specific

words, these contrasts can be word-specific initially. As more words are learned and contrasts

become generalized across more lexical items, it is possible for two contrasts to become more

and more phonologically similar. This scenario is depicted in Figure 3.8. Upon learning

ORANGE 3.8a, rather than adjusting the boundary as in Figure 3.7, another possibility

is that the learner creates an additional contrast as in Figure 3.8b. After learning more

words (not represented in the plots to avoid visual clutter) and updating the boundaries, it

is possible for two categories to become functionally equivalent. Illustrated in Figure 3.8c,

both horizontal planes that create divisions mostly along F1 separate RED+ORANGE from

BLUE+PURPLE. Because these two contrasts are functionally the same in this lexicon, they

consolidate into one contrast (Figure 3.8d). In this case, consolidating the categories does

not affect the system of contrast within the lexicon: BLUE remains distinct from RED,

and PURPLE remains distinct from ORANGE. The developmental interpretation for this

consolidation of categories is that learners tend to learn word-specific contrasts initially. The

learner might acquire a contrast /b/ vs. /d/ from “ball” and “doll”, then acquire a similar

contrast /b’/ vs. /d’/ from “boo” and “do” because the phonetic realizations of /b/ and /d/

might be different as the result of coarticulation with the following vowel. As the learner

acquires more words and adjust the phonological boundaries, word-specific phonetics will

be attenuated, and /b/ vs /d/ and /b’/ vs /d’/ will become more similar and eventually

consolidated as the same categories.
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(a) The learner acquires a new word

ORANGE.

(b) The learner creates another phonological

contrast.

(c) The two contrasts become functionally

the same.

(d) The two contrasts consolidate.

Figure 3.8: An illustration of phonological contrast consolidation.

3.2.2.4 Contrast determination

The above presents two mechanisms that two words can be represented as distinct. The

model can create a new phonological contrast or adjust an existing contrast to accommodate

the increasing lexical distinctions that need to be represented. However, homophones exist

in language, and mergers as a sound change are very common. A model of phonological

acquisition should be able to account for the existence of true homophones. How does the

model choose between 1) creating a new contrast, 2) adjusting an existing contrast, and 3)
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(a) The learner acquires a new word

ORANGE.

(b) ORANGE is less frequent than

PURPLE.

(c) ORANGE is acoustically similar to

PURPLE.

(d) The learner acquires a new word

ORANGE.

Figure 3.9: An illustration of phonological contrast generalization and merger.

representing two words as homophones?

How does the learner conclude which items in their lexicon are better represented ho-

mophones? The choice depends on the acoustic distance between the two words in question,

the existing phonological contrasts, and the relative frequencies of the two words. The moti-

vation for this decision comes from psycholinguistic findings about lexical access. When two

words have the same phonological form, the more frequent of a homophonic pair is accessed

first regardless of syntactic and semantic context (Boland and Blodgett, 2001; Caramazza

et al., 2001; Bonin and Fayol, 2002). The processing cost of representing two words as
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homophonous can thus be quantified as the relative frequencies of the two words.

Returning to the learning stage where ORANGE has just been acquired (Figure 3.9a).

There are possible scenarios it might be advantageous for the learner to represent PURPLE

and ORANGE as homophones rather than representing them distinctly. For example, if

ORANGE is less frequent than PURPLE and the two words are acoustically close (Figure

3.9b), a learner that assigns the same representation to PURPLE and ORANGE would

still correctly identify PURPLE as the intended referent most of the time. If the intended

referent is ORANGE, the learner would access PURPLE first and need additional processing

to access the less frequent form ORANGE. This delay in processing can be quantified using

the frequencies of the two words. With homophonous representations, the delay in processing

from representing the two words as homophones can be quantified as follows:

Chomophone =
freq(ORANGE)

freq(ORANGE)+freq(PURPLE)
(3.8)

On the other hand, if ORANGE and PURPLE are more acoustically distinct (Figure

3.9d), it might make sense to represent them distinctly even if PURPLE is far more fre-

quent. Two factors need to be considered in making this determination. First, are PURPLE

and ORANGE sufficiently acoustically distinct to warrant the creation of a new contrast?

Second, is ORANGE frequent enough to warrant a distinct lexical representation? The first

factor can be quantified using a measure of acoustic confusability between the two words:

confusability =
d(PURPLE, boundary)

d(PURPLE, boundary)+d(PURPLE, ORANGE)

where:

d(a1, a2) =

vuut
mX

i=1

(a1i � a2i)2
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The closer ORANGE is to PURPLE, the more acoustically similar they are. If they

are too acoustically similar, creating a contrast between them will likely result in confusion

in perception. This confusability measure is calculated based purely on acoustics, and it is

still necessary to take into account the relative frequencies of the two words. If both words

have the same frequency, they would be confused with each other by this measure. However,

since the two words are not equally frequent, a weighted confusability measure can be used

to quantify the processing cost of having contrastive representations:

Ccontrastive =
freq(PURPLE)

freq(ORANGE)+freq(PURPLE)
⇥ confusability

If the processing cost of homophonic representation is greater than contrastive repre-

sentation (Chomophone > Ccontrastive), the learner either adjusts existing contrasts or create

a new contrast to be able to represent these two words distinctly. Otherwise, homophonic

representations are tolerated.

Lastly, one more scenario is illustrated in 3.9d, where shifting the existing phonologi-

cal plane to distinguish PURPLE and ORANGE would make ORANGE homophonic with

GREEN. Therefore, creating a new contrast would be the only option here if the learner

determines that PURPLE and ORANGE need to be represented distinctly.

3.2.3 Emergent representations and properties of the model

This learning mechanism outlined in this section has several emergent properties, which are

discussed below.

Phonological features. Some prominent treatment of phonology assume innate, univer-

sal phonological features (Jakobson, 1968; Chomsky and Halle, 1968; Reiss, 2018). This

learning model illustrates a concrete path by which phonological features can be acquired

using only acoustic and lexical cues. There is no need to assume innate phonological features.

Some abstract category formation mechanism would be sufficient, either domain-general or
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guided by UG.

Acoustic cues for phonological features. While learning phonological categories, the

model simultaneously learns the mapping between these categories and the relevant acoustic

cues. By comparing the acoustics of lexical items, the model identifies which acoustic cues

are meaningful to a phonological contrast and their relative contribution to the identification

of the phonological contrast.

Discrete lexical representations. Discrete lexical representation are assigned to each

word as soon as it is acquired. The creation of phonological boundaries enables to learner

to transform the acoustics of each word into phonological distinctions.

Increasing specificity of lexical representation. The learning mechanism naturally

address early underspecification that has been reported by many studies (Hallé and

de Boysson-Bardies, 1996; Vihman et al., 2004; Fikkert and Levelt, 2008). The lexical

representations themselves become more specified when more words are learned, and the

differences between infant and child language can be largely explained in terms of the size

of the vocabulary. With few words, the apparent underspecification can come from two

sources. First, the learner does not need as many symbols to represent fewer words, lead-

ing to the generalization of more phonetic information over fewer symbols. Second, with

a smaller vocabulary, the learner may be inaccurate in determining which specific acoustic

cues matter for a phonological contrast or fail to compensate for coarticulatory effects.

Minimal pairs. Because phonological representations are built on lexical contrast, mini-

mal pairs arise naturally as the result of the learning process.

Feature economy. Feature economy refers to the idea that languages tend to maximize

the use of contrastive dimensions (Clements, 2003). Because phonological contrasts are

only created as needed from lexical and acoustic cues, the resulting system is naturally

economical. As more words are acquired, more dimensions of contrasts are learned, but the
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growth of contrasts is much slower than the growth in vocabulary.

3.2.4 Advantages of the model

A general approach to phonological acquisition. This is a general and integrated

model for phonological learning and aims to learn any phonological contrasts. While many

computational models focus on specific contrasts and only use cues for the contrast in

question, this model makes use of the acoustic information over an entire word to learn

cue weighting, and abstract lexical representations simultaneously.

Minimal theoretical assumptions. The applicability of this model is not dependent

on existing phonological frameworks. The abstract representations in learned through the

model can be used for further phonological analysis.

Minimal memory requirement. Because the learning is online, this model does not

require calculations over a large number of input items. This model only requires the learner

to remember the general acoustic shape of each word, their phonological representations,

and the cue weights for each learned phonological contrast.

Non-parametric learning. This model is completely unsupervised and nonparametric.

The learner does not know what contrasts exist and which cues matter for particular con-

trasts, both of which are discovered in the learning process. Also, the learning result is

consistent and not dependent on the initialization of parameters. Third, this model can

makes use of dynamic and overlapping acoustic information in word learning.

3.3 Experiment

The learning mechanism described in Section 3.2 is implemented computationally to test its

validity. Acoustic measurements are extracted from the Philadelphia Neighborhood Corpus

as input to the model, and the learning outcomes for phonological contrasts, acoustic cue

weights, and lexical representations are presented.
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Figure 3.10: Input word frequencies.

3.3.1 Input preparation

Most of the previous work in the computational modeling of phonological/phonetic acqui-

sition use simulated data as input (e.g., Vallabha et al., 2007; Feldman et al., 2013a). In

order to better represent the noisy data that the child learner is faced with, this study

uses real acoustic measurements from the Philadelphia Neighborhood Corpus (Labov and

Rosenfelder, 2011). The input is limited to monosyllabic words with the syllable structures

V, CV, VC, and CVC. Words containing nasal segments were excluded because of difficulty

with automatically tracking measures of nasality across a large number of speakers. Words

with frequencies 20 or fewer in the entire corpus are omitted.

3.3.1.1 Measurement extraction

A Praat script was written to automatically extract measurements from the corpus. For each

segment, measurements were taken at 25%, 50%, and 75% of the duration of the segment.

For all consonants, duration, center of gravity, jitter, shimmer, HNR (harmonics-to-noise-

ratio), and autocorrelation were extracted. For sonorant consonants, f0, F1, F2, F3, B1, B2,

and B3 were also extracted. Most vowel measurements, including F1, F2, F3, B1, B2, and

B3 are available with the PNC. An additional measurement f0 is extracted for vowels.
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3.3.1.2 Measurement normalization

Because the measurements were extracted automatically, normalization was carried out to

replace potential tracking errors. The formant values were transformed onto the bark scale,

and the f0 values were transformed onto semitones for each speaker. Measurements below

10% and above the 90% percentiles on the group level were changed to the group mean, and

all the measurements were z-scored.

3.3.1.3 Descriptive statistics of the input

There are measurements from a total of 383 subjects from the PNC. Overall, there are 219

word types. Out of the word types, there are 162 CVC words, 30 CV words, 24 VC words,

and 3 V words. There are 153,438 total word tokens, and 62909 CVC, 59934 CV, 28166 VC,

and 2429 V word tokens. There are 16 onset phonemes (including null onset), 11 nucleus

vowels, and 14 coda phonemes represented in the input data (including null coda). In total,

42 phonological oppositions are present among the phonemes in each position (Table 3.1).

Onset anterior, approximant, back, consonantal, continuant,
coronal, delayed release, distributed, dorsal, front,
labial, labiodental, lateral, round, sonorant, strident,
voice

Nucleus back, diphthong, front, front.diphthong, high, labial,
long, low, round, stress, tense

Coda anterior, approximant, consonantal, continuant, coro-
nal, delayed release, distributed, dorsal, labial, labio-
dental, lateral, sonorant, strident, voice

Table 3.1: Actual phonological contrasts in the input words for each position.

3.3.1.4 Representation of the input

Each segment of a word is represented as a 14-element vector with the measurements in

the follow order: phoneme duration, f0, F1, F2, F3, B1, B2, B3, center of gravity, voicing,

jitter, shimmer, autocorrelation, HNR. If a segment is null (for instance, for VC words the
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onset is null), a vector containing 14 0’s is used. Each instance of a word is represented as

a 42-element vector (14 cues ⇥ 3 segments).

3.3.1.5 Learning trials

In total, there were 2100 trials with 21 input vocabulary sizes in increments of 10 (10 words,

20 words, 30 words, etc.) and 100 learning trials for each input vocabulary size. That

is, for 100 trials, the model randomly picks 10 out of the 219 word types and uses the

acoustic tokens of these 10 word types as input for learning. For each trial, 10 different

words are randomly sampled. After 100 trials with 10 input words are terminated, 100

trials with 20 random input words are run, and so on. Learning is terminated after the

number of phonological contrasts has stayed stable for 20,000 iterations. To evaluate the

learning process and outcome of the learning model, the learned phonological weights, lexical

representations, and word frequencies are logged every time there is a phonological change

(i.e., addition or consolidation of phonological contrasts) and also every 1000 iterations.

3.3.2 Results

Overall, the model learns reasonable numbers of categories for the number of input words,

and phonological contrasts converged for all trials. Case studies of specific learning tri-

als show that the learned representations and the acoustic cues approximate phonological

features commonly used for phonological analysis.

3.3.2.1 The effect of input vocabulary size

Across 2100 learning trials with varying input sizes, the model learned more contrasts for

larger numbers of words. Figure 3.11a plots the number of categories the model learned for all

learning trials, and a numerical summary of the results is presented in Table 3.2. The effect

of vocabulary size on the number of contrasts learned is apparent. As the number of input

words increased, the model learned more phonological categories to represent the words that

have been acquired in the lexicon. The growth of phonological contrasts appears to flatten
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(a) Learned number of contrasts for all the trials by the

number of input words.

(b) Number of iterations needed for phonological conver-

gence by the number of input words.

Figure 3.11: Learning outcome as the number of input words increases.

out with more number of words. This behavior of the model is expected, since the theoretical

minimum number of binary contrasts required to represent N words is log2(N). For 210

words, the minimum number of contrasts needed is eight (log2(210) = 7.71). The model

learns on average twice the number of the theoretical minimum for 210 words. This could be

partially the result the actual number of contrasts that exists in the input words. When all

input words are considered, there are 42 distinct features using a feature system proposed for

phonological analysis (Table 3.1). Compared to the 42 actual distinctive features that can

be identified from these words, 16-17 learned features is reasonable for the given vocabulary.
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# input words contrasts sd
10 4.09 1.13
20 5.93 1.43
30 7.54 1.40
40 8.50 1.61
50 9.47 1.54
60 10.65 1.31
70 11.03 1.34
80 11.63 1.63
90 12.39 1.48

100 13.03 1.48
110 13.46 1.59
120 14.08 1.64
130 14.25 1.73
140 14.95 1.60
150 15.41 1.46
160 15.46 1.77
170 15.99 1.51
180 15.74 1.92
190 16.64 1.48
200 16.56 1.70
210 17.06 1.77

Table 3.2: Average number of phonological contrasts learned over 100 learning trials for increasing numbers
of input words.

Figure 3.11b displays the number of trials needed before the model converges on a set of

phonological contrasts. As defined in Section 3.3.1.5, phonological convergence is achieved

when there have been no changes to phonological contrasts for 20,000 iterations. The av-

erage number of iterations needed for convergence increases as the number of input word

increases, but the variance also becomes greater as the number of input word increases. With

more words, the model needs to account for a wider range of phonetic variation. Because

word learning is probabilistic, in some cases, the model might acquire more generalizable

contrasts earlier, resulting in the lower number of iterations needed for convergence. It is

also possible that the model will need to re-tune the phonological contrasts many more times

before achieving a stable state, thus resulting in a greater number of trials needed before

convergence.
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3.3.2.2 An example of learned representations

Figure 3.12: Word and contrast learning trajectories for a 10-word trial.

Each learning trial produces three results: the number of contrasts, cue weights for

each contrast, and lexical representations based on these learned contrasts. This section

presents a typical learned outcome from a learning trial with 10 words. The small number

of words makes the results more easily interpretable. This particular instance of the learning

outcome produced 4 phonological contrasts. The acquisition trajectory on the word level

and the phonological level is illustrated in Figure 3.12. In this particular trial, a stable

phonological state is reached on iteration 347, before all ten words have been acquired

on iteration 466. The rest of this section will present the learning outcome of this trial

by referencing the learned contrasts, learned representations, and comparisons to actual
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contrasts from a phonological analysis of these words.

Figure 3.13: Learned weights for each of the four contrasts for a 10-word learning trial.

Figure 3.13 illustrates the learned cue weights in the form of a heatmap. Each column

in the plot corresponds to one phonological contrast. Darker colors (either more blue or

more red) indicate that the acoustic cue is more important for the contrast. Table 3.3

presents the learned lexical representations according to the four phonological contrasts.

The use of “0” and “1” are purely symbolic and they merely indicate distinction along a

phonological dimension. All the words that have the representation “0” fall on one side of

the phonological division in acoustic space, while all the words with the representation “1” fall

on the other. Which words are assigned “0” and which are assigned “1” is arbitrary. Figure
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3.14 shows how the learned representations correspond to phonological features typically

used in phonological analysis.

referent contrast 1 contrast 2 contrast 3 contrast 4

FAR 0 0 0 1
ARE 1 0 0 1
OR 1 0 0 0
DEAL 1 1 0 0
WE’VE 1 1 1 0
FEEL 0 1 1 0
TOOK 0 0 1 0
COP 0 0 1 1
PAID 0 1 1 1
CAT 0 1 0 1

Table 3.3: Learned lexical representations with 10 words in the input.

According to Figure 3.13, the first contrast learned in this trial is an onset contrast, and

the relevant cues are autocorrelation and HNR. These acoustic cues are typically associ-

ated with the manner or voicing of consonants. In the learned representations (Table 3.3),

words with voiceless onsets (FAR, FEEL, TOOK, COP, PAID, CAT) are separated from

words with voiced onsets or no onsets (ARE, OR, DEAL, WE’VE). Indeed, when compar-

ing the learned contrast with phonologically analyzed contrasts, this dimension correlates

highly with voicing and manner features (Figure 3.14). Moving on to the second learned

contrast, the heavily weighted phonetic cues are in the nucleus, and the most important

cue is F2 (Figure 3.13), which usually indicates differences in the frontness or backness

of the vowel. Indeed, in the learned representations, this contrast marks the distinction

between back vowels (FAR, ARE, OR, TOOK, COP), and front vowels (DEAL, WE’VE,

FEEL, CAT), and the learned representations correspond to [front] and [back] features in

traditional phonological analysis (Figure 3.14).

As for contrast 3, the phonetic weighting indicates that this is a coda contrast based

on F3 differences (Figure 3.13). Unlike contrast 1 and contrast 2, this contrast does not

correspond neatly to any phonologically analyzed contrasts. For the most part, words

with sonorant codas (FAR, ARE, OR, DEAL) are separated from stop and fricative co-
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Figure 3.14: Correlation of learned representations to to actual phonological features for a 10-word trial.

das (WE’VE, TOOK, COP, PAID). However, CAT and FEEL do not fit this pattern. The

learned representation for CAT is /0 1 0 1/. If CAT is represented as /0 1 1 1/, it would be

homophonous with PAID. Perhaps this is the reason that the model adjusts this contrast

to accommodate CAT vs. PAID in the existing phonological space rather than creating a

new contrast. The assignment of FEEL to /1/ for contrast 3 is anomalous and may be

the result of the specific acoustic measurements of FEEL. A more general voicing contrast

may be acquired with more words. Finally, the last learned contrast distinguishes vowel

height, with F1 as the most prominent acoustic feature. Table 3.3 shows that words with

low vowels (FAR, ARE, COP, PAID, CAT) are separated from words with high vowels (OR,

DEAL, WE’VE, FEEL, TOOK), and this is confirmed by the high correlations to manner

features in Figure 3.14. There are minimal pairs in the learned phonological representations,

but these minimal pairs are defined within the phonological contrasts learned from these 10

input words. FAR /0 0 0 1/ and ARE /1 0 0 1/ differ by the onset Contrast 1. This cor-

responds to the actual phonological contrast that FAR has an onset /f/ and ARE has null

onset. The rest of these two words have the same representations. Similarly, ARE /1 0 0 1/

and OR /1 0 0 0/ form a minimal pair and differ only in Contrast 4, a vowel height contrast.
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However, within this phonology, TOOK /0 0 1 0/ and COP /0 0 1 1/ are also a minimal

pair even though in actual English phonology they differ by all three segments. These two

words are fairly acoustically similar: They both have a voiceless stop in the onset and a

voiceless stop in the coda. With a small vocabulary of 10 words, representing TOOK and

COP as a minimal pair is entirely reasonable. The difference in the vowel – the distinctive

part between these two words – is enough for the learner to identify the contrast between

these two words within this small lexicon. The learner is being efficient (or economical) in

this kind of use of their phonological space. With a larger vocabulary, the learner will need

to create more fine-grained contrasts between the different stops, but this is not necessary

given the acoustics and the lexical contrasts in the input of this trial.

Figure 3.15: Word and contrast learning trajectories for the 50 word trial.
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3.3.2.3 Learning outcome with 50 words

The model is successful at discovering meaningful contrasts for the 10-word trial presented

above. Does this result generalize to the learning of more words? In this section, the

results from a 50-word learning trial are presented. The learning trajectory for words and

phonological contrast is shown in Figure 3.15. For this case, the number of phonological

contrast stabilizes at iteration 2728, when 36 words have been acquired. These learned

representations are sufficient to accommodate the words that have not yet been learned. All

50 words are acquired at iteration 7352.

Figure 3.16: Learned contrasts for 50 words.

Figure 3.16 shows the learned cue weights. A total of 8 contrasts were learned, among
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which there are two onset contrasts (#6 and #7), three vowel contrasts (#1, #3, #8), and

three coda contrasts (#2, #4, #5). Since listing all the learned representations is not as

easily interpretable as the 10-word trial, I will discuss the learned representation results on

the segmental level.

Contrast 6 Contrast 7

Fricatives + t Voice

0 1 0 1

? 100.00 0.00 0.00 100.00
b 100.00 0.00 0.00 100.00
p 100.00 0.00 100.00 0.00
d 100.00 0.00 50.00 50.00
t 0.00 100.00 100.00 0.00
g 100.00 0.00 25.00 75.00
k 50.00 50.00 100.00 0.00
f 33.33 66.67 100.00 0.00
s 0.00 100.00 100.00 0.00
S 33.33 66.67 100.00 0.00
l 100.00 0.00 50.00 50.00
ô 100.00 0.00 0.00 100.00
w 100.00 0.00 0.00 100.00
j 100.00 0.00 0.00 100.00

Table 3.4: Percentages of each onset phoneme assigned to each side of a learned phonological contrast.

The learned onset distinctions are compared to actual phonemic representations in Table

3.4. For each learned phonological contrast, this table presents the percentages of the learned

representations for each phoneme. For instance, /p/ is assigned /0/ for the learned Contrast

6 in 100% of the word types it occurs in, while /t/ is assigned /1/ for Contrast 6 in 100% of

the word types it occurs in. According to Figure 3.16, Contrast 6 separates onset phonemes

by the acoustic cue center of gravity. Comparing this to the assigned representations, it

appears that Contrast 6 separates fricatives from the rest of the phonemes. The phoneme

/t/ is grouped with the fricatives, possibly because its coronal place of articulation results

in similar average frequencies as /s/ and /S/. Contrast 7 is more straightforward; it creates

a boundary between voiced and voiceless onsets by dividing the acoustic space mostly along
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HNR and autocorrelation, both are measures of periodicity in the signal.

Contrast 1 Contrast 3 Contrast 8
Front/Back High/Low High/Low

0 1 0 1 0 1

i 0.00 100.00 100.00 0.00 100.00 0.00
I 100.00 0.00 100.00 0.00 100.00 0.00
e 0.00 100.00 0.00 100.00 40.00 60.00
E 16.67 83.33 0.00 100.00 83.33 16.67
æ 66.67 33.33 0.00 100.00 0.00 100.00
A 100.00 0.00 0.00 100.00 20.00 80.00
2 100.00 0.00 0.00 100.00 50.00 50.00
O 100.00 0.00 0.00 100.00 0.00 100.00
o 100.00 0.00 0.00 100.00 100.00 0.00
U 100.00 0.00 100.00 0.00 100.00 0.00
u 85.71 14.29 100.00 0.00 100.00 0.00

Table 3.5: Percentages of each vowel phoneme assigned to each side of a learned phonological contrast.

The learned representations for each vowel is presented in Table 3.5. Contrast 1 sepa-

rates the phonemes mostly along F2, which corresponds to the frontness or backness of the

vowel. The acoustic boundary separates /i e E/ from the rest of the vowels. This learned

boundary appears to be very “front”: The vowel /I/ and /æ/ are typically described as front

in phonological analysis, but they are grouped with the back vowels in this learned contrast.

Contrast 3 clearly distinguishes high vowels from non-high vowels. Contrast 8 is a second

high-low contrast, but the boundary appears to be “lower” than Contrast 3. Contrast 8 sep-

arates the mid vowels /o/ and /E/ from the low vowels, but /e/ is ambiguously represented

by this contrast.

There are three contrasts learned for the coda (Table 3.6). Contrast 2 corresponds to

voicing and separates the voiceless codas /p t k s S T/ from the voiced ones /d v z ô/. Both

Contrast 4 and Contrast 5 weigh mostly heavily the cues center of gravity and phoneme

duration. Contrast 4 distinguishes fricatives and the phoneme /k/ from non-fricatives, but

it is ambiguous for the phonemes /g/ and /l/. Contrast 5 groups /g/ and /l/ with non-

fricatives. All the fricatives have the same representation except for /v/, but this might be

because the only word type with /v/ in the coda is “of.”
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Contrast 2 Contrast 4 Contrast 5
Voicing Fricatives + k Fricatives - v

0 1 0 1 0 1

? 14.29 85.71 71.43 28.57 100.00 0.00
p 100.00 0.00 83.33 16.67 83.33 16.67
d 28.57 71.43 100.00 0.00 85.71 14.29
t 80.00 20.00 80.00 20.00 100.00 0.00
g 50.00 50.00 50.00 50.00 100.00 0.00
k 100.00 0.00 0.00 100.00 100.00 0.00
f 100.00 0.00 0.00 100.00 0.00 100.00
v 0.00 100.00 100.00 0.00 100.00 0.00
s 100.00 0.00 0.00 100.00 0.00 100.00
S 100.00 0.00 0.00 100.00 0.00 100.00
T 100.00 0.00 0.00 100.00 33.33 66.67
z 20.00 80.00 0.00 100.00 0.00 100.00
l 50.00 50.00 50.00 50.00 100.00 0.00
ô 0.00 100.00 66.67 33.33 100.00 0.00

Table 3.6: Percentages of each consonant phoneme assigned to each side of a learned phonological contrast.

3.3.2.4 An example of category consolidation

The learning mechanism outlined in Section 3.2.2.3 describes a scenario where two contrasts

can become similar and consolidate without any changes to the system of lexical contrast.

This section shows a specific example of how this process is played out during the course of

learning by the model.

Figure 3.17 and Table 3.17 show the four snapshots of the learning process in a particular

trial. On iteration 222 (3.17a), the model learns a vowel contrast (Contrast 2) from WE

and BUT since Contrast 1 does not distinguish between them. On iteration 246, the model

learns another vowel contrast (Contrast 3) from DO and BUT. By iteration 974, Contrast 2

and Contrast 3 have become fairly similar. On iteration 1400, CONTRAST 2 and Contrast

3 are consolidated into one category. When the contrasts are initially learned, the acoustics

cues that were weighted the heaviest do not make much sense based on what we know about

English phonetics. F3 for Contrast 2 and B2 (bandwidth of F2) for Contrast 3 are not

the most important acoustic cues when it comes to vowel distinctions (Figure 3.17b). As

more words are learned and classified, both contrasts update with the phonetics of newly
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(a) Learned contrasts at iteration 222. (b) Learned contrasts at iteration 246.

(c) Learned contrasts at iteration 974. (d) Learned contrasts at iteration 1400.

Figure 3.17: An illustration of contrast generalization.

acquired words and begin to make more sense phonetically. F2, which corresponds to the

frontness/backness of the vowel, becomes more heavily weighted for both contrasts and

eventually the two become functionally the same and are consolidated.
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contrast

referent 1 2 3 4 5 6 7 8
iteration 222

WE 1 1
BUT 1 0

iteration 246
WE 1 1 1
BUT 1 0 0
DO 1 0 1

iteration 974
WE 1 1 1 0 0 0 0
BUT 0 0 0 0 1 0 0
DO 1 0 1 0 0 1 0

iteration 1400
WE 1 ⇥ 1 0 0 1 0 0
BUT 0 ⇥ 0 0 1 0 0 0
DO 0 ⇥ 1 0 0 1 0 0

Table 3.7: Evolution of learned lexical representations.

3.4 Discussion

The model presented in this chapter makes several important contributions to the under-

standing of first language acquisition and phonological representation. The model succeeds

in learning phonological contrasts appropriate for a given lexicon by identifying meaningful

boundaries in the multidimensional acoustic space. These results demonstrate the efficacy

of a nonparametric and unsupervised approach to modeling phonological acquisition and

that phonological features are an emergent property from structuring the acoustic space to

accommodate lexical contrast.

3.4.1 Computational approach

The model advances the computational study of phonological acquisition in a number of

ways. First, this model is a general model of phonological acquisition. Many previous

computational models of speech category acquisition focus on specific contrasts and use

73



cues relevant to those contrasts as input for learning, such as vowels (Vallabha et al., 2007;

Feldman et al., 2013a; Dillon et al., 2013) and voicing (Toscano and McMurray, 2010). The

model presented in this chapter is not limited to specific contrasts but aims to learn any

contrast in a given lexicon.

Second, it is common practice to use artificially generated data as input (e.g., Vallabha

et al., 2007; Toscano and McMurray, 2010; Feldman et al., 2013a). This model achieved rea-

sonable results using natural acoustic measurements taken from a speech corpus. Moreover,

the input consists of acoustic measurements from entire words. The acoustic representations

used in this study better approximate the multidimensional and continuous nature of the

speech signal a learner receives. Although the approach used in this model is not a per-

fect representation of continuous speech signal, it nevertheless is an important step forward

towards more realistic input representation in acquisition modeling.

Third, the model is set up to more closely simulate the actual learning process of a child.

This model also has the advantage of being nonparametric. In contrast, models that rely on

statistical learning, such as Bayesian models (e.g., Feldman et al., 2013a), need parameter

tuning to achieve the best results. Additionally, the learning is completely online. The

learner hears the input one at a time and updates their phonological knowledge as needed

at each iteration of learning, just as a child might as they are exposed to more and more

linguistic input. In contrast, many existing models rely on batch learning. While these

algorithms can be adapted to be online (e.g., Vallabha et al., 2007), their implementation

are often parametric. Moreover, the learning in this model is unsupervised. It does not

learn from target representations, but rather discovers both contrastive dimensions and

appropriate phonological representations through learning. Acoustics and lexical contrast

are sufficient for the learner to form appropriate abstract representations. All of these

properties closely approximate the actual challenge faced by the learner.

Finally, the learning outcome from the experiment validates the learning mechanism

described in the model. The model learns the appropriate numbers of phonological con-

trasts given the size of the input lexicon, and it also learns the appropriate phonetics for
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each phonological contrast. Because phonological contrasts and lexical representations inter-

act and update dynamically, this model can offer some explanations for the developmental

trajectory of phonology. At the beginning of learning, the model had limited numbers of

contrastive dimensions because only a few words need to be assigned abstract represen-

tations. However, with more input and sufficient word frequency, the model learns more

distinct representations for different lexical items. This can in part explain why early lexical

representation appears to be underspecified. With a small vocabulary, the learner does not

need phonologically detailed representations because there are fewer word distinctions that

need to be represented. The success of the model so far indicates representational pressures

indeed play a role in phonological acquisition.

3.4.2 Theoretical implications

Phonological features are a useful tool of phonological analysis, but as reviewed in Sec-

tion 2.2.2, assuming a universal set of innate features has a number of issues. The model

presented in this chapter operationalizes the acquisition of emergent phonological features,

and the experiment results indicate that the learning mechanism proposed in this chapter

is computationally viable. One important theoretical advance from this model is that it

outlines a concrete path from multidimensional acoustic input to abstract representation.

Although many conceptual models of phonological acquisition incorporate lexical learning

(e.g., Jusczyk, 1997; Dresher, 2004; Werker and Curtin, 2005), most of these models have

not been implemented computationally and tested.

The learning is both phonetically and linguistically motivated, and the acoustic input

and learned contrasts reflect the multidimensional nature of phonetic cues in production

and perception. The hypothetical binary contrastive dimensions can offer insights into why

phonological systems tend to be symmetrical. For example, if a contrastive dimension is

created to distinguish vowel height for /i/ and /æ/, it is easy to extend the same contrast to

vowels like /u/ and /A/ since there are shared acoustic cues. Lastly, this model can capture

the role of language experience. Depending on the input, the specific order of acquisition of
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contrasts can differ, but the end result will converge to distinct phonological representation

of all the lexical items when the critical number of lexical items has been acquired.

3.4.3 Future directions

There are a few aspects of the work that needs further development. First, it would be

ideal if the model learns contrastive dimensions and cue weights that more consistently

align with results from linguistic analysis. Although the results presented above are fairly

close to linguist contrasts, the learning results vary from trial to trial. Part of this variation

is expected, since there is a random element in word acquisition. However, the learning

results might be more consistent with additional acoustic measurements. Second, at the

maximum, only 210 lexical types were used as input to the model. It would be interesting

to see how further input would alter the learning outcome of the model. Third, as this

model is intended to be a general model of acquisition, the learning mechanism in the model

should validated with results from additional languages. Lastly, this model only learns

position-specific contrasts. Generalization across different positions is an important part of

phonological learning and should be incorporated into a model phonological acquisition.

3.5 Conclusion

The learning model presented in this chapter makes several important contributions. First, it

demonstrates that innate features are not necessary for the acquisition of discrete phonolog-

ical representation. Second, it contributes to the research on emergent phonological features

by proposing a clear mechanism whereby phonological contrasts can be learned from the

input in a nonparametric and unsupervised fashion. Third, the model provides explanations

for the trajectory of phonological acquisition observed in developmental studies. Overall,

the results in the chapter suggest that phonological representations can emerge from the

interaction of acoustics and lexical contrast without innate features or statistical learning.
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